Coursera Machine Learning : W9 Anomaly Detection
W9 Anomaly Detection
Notes
Density Estimation
- Usage: New machine examination, Fraud Detection
- P(x)=p(x1; miu1,sigma12)p(x1; miu2,sigma22)…
- Anomaly Detection Algorithm
- Choose features xi that is indicative of anomalous examples
- Fit parameters miu1…miun; sigma12, sigman2.
- Calculate P(xnew) for the new example, if P(xnew) < epsilon
- Evaluation of Algorithm
- Example: 10000 Normal, 20 Anomaly
- Training: 6k Normal
- Cross-validation: 2k Normal + 10 Anomaly
- Test: 2k Normal + 10 Anomaly
- Possible Evaluation Metrics
- True positive/false positive/false negative/true negative
- Precision/Recall
- F1-score
- Anomaly Detection with multivariate Gaussian
- Original model: Computational cheaper, better for manually created features, okay with small m
- Multivariate Gaussian: Automatic correlation caputure, computational expensive, must m»n (m is 10xn or lager)
- aptitude 资质