LZN's Blog CodePlayer

Coursera Machine Learning : W9 Anomaly Detection

2021-09-07
LZN

W9 Anomaly Detection

Notes

Density Estimation
  • Usage: New machine examination, Fraud Detection
  • P(x)=p(x1; miu1,sigma12)p(x1; miu2,sigma22)…
  • Anomaly Detection Algorithm
    • Choose features xi that is indicative of anomalous examples
    • Fit parameters miu1…miun; sigma12, sigman2.
    • Calculate P(xnew) for the new example, if P(xnew) < epsilon
  • Evaluation of Algorithm
    • Example: 10000 Normal, 20 Anomaly
    • Training: 6k Normal
    • Cross-validation: 2k Normal + 10 Anomaly
    • Test: 2k Normal + 10 Anomaly
  • Possible Evaluation Metrics
    • True positive/false positive/false negative/true negative
    • Precision/Recall
    • F1-score
  • Anomaly Detection with multivariate Gaussian
    • Original model: Computational cheaper, better for manually created features, okay with small m
    • Multivariate Gaussian: Automatic correlation caputure, computational expensive, must m»n (m is 10xn or lager)
  • aptitude 资质

Comments

Content